首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1898篇
  免费   98篇
  国内免费   11篇
化学   1350篇
晶体学   23篇
力学   65篇
数学   163篇
物理学   406篇
  2023年   9篇
  2022年   18篇
  2021年   61篇
  2020年   59篇
  2019年   51篇
  2018年   37篇
  2017年   41篇
  2016年   62篇
  2015年   55篇
  2014年   75篇
  2013年   139篇
  2012年   148篇
  2011年   151篇
  2010年   91篇
  2009年   86篇
  2008年   151篇
  2007年   118篇
  2006年   121篇
  2005年   91篇
  2004年   100篇
  2003年   53篇
  2002年   75篇
  2001年   32篇
  2000年   42篇
  1999年   18篇
  1998年   10篇
  1997年   6篇
  1996年   18篇
  1995年   10篇
  1994年   16篇
  1993年   14篇
  1992年   9篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有2007条查询结果,搜索用时 718 毫秒
91.
Monoolein (MO) cubic phase incorporating hydrophobically modified chosan (Hm chitosan) was prepared to obtain a pH-dependent release. Following calorimetric study, Hm chitosan had little effect on the crystal structure of MO cubic phase under acidic condition where Hm chitosan is readily soluble. At a higher pH (e.g., pH 9.0), however, the crystal structure of MO cubic phase was disturbed, possibly due to the insolubilization of Hm chitosan at the alkali condition. Whether the dye included in the cubic phase is anionic (amaranth) or cationic (methylene blue), the release from the cubic phase was suppressed as the pH of release medium increased. The structural change of cubic phase caused by the insolubilization of Hm chitosan, or the blockage of the water channel of the cubic phase by precipitated Hm chitosan would be responsible for the suppressed released.  相似文献   
92.
New chiral bent-core mesogens, derivatives of 1,3-phenylene bis[4-(alkanyloxyphenyliminomethyl)benzoate], were synthesized with variation of a substituent (X=F, Cl); their antiferroelectric properties are described. The mesomorphic and switching properties were characterized by differential scanning calorimetry, polarizing optical microscopy, triangular wave method, and X-ray diffractometry in the small and wide angle regions. The presence of chiral tails at the terminals of side wings in the bent-core molecules induced a decrease in transition temperature and formation of the switchable SmC* phase in the melt. In addition, the introduction of a lateral halogen substituent in the Schiff's base moiety prevented the regular stacking of the molecules, resulting in the formation of very complex optical textures. The smectic phase with F-substituted PBFDOB and Cl-substituted PBCDOB showed layer spacings of 39 and 38.5?Å, respectively, corresponding to the end-to-end distance of molecules with a bent conformation. Significantly, the smectic phases of PBFDOB and PBCDOB exhibited a period of 179.5 and 131?Å, respectively, compatible with a helical structure with periodicity about 4.6 and 3.4 times the layer spacings.  相似文献   
93.
Adsorption and desorption of ions at interface between liquid crystal and alignment layer in liquid crystal displays play a crucial role in residual direct current voltage associated with image sticking. In this article, the dependency of such adsorption and desorption of ions on resistivity of alignment layer and sign of liquid crystal dielectric anisotropy in the fringe-field liquid crystal cell has been investigated. Our studies show that the time constant of ions during adsorption and desorption depends upon resistivity and dielectric constant of liquid crystal and alignment layer, and most strongly influenced by the resistivity of alignment layer such that the one with lower resistivity in two orders shows much faster adsorption and desorption at the interface than that of the one with higher resistivity.  相似文献   
94.
Banana-shaped achiral compounds, the 1,3-phenylene bis[4-(alkenyloxyphenyliminomethyl)benzoate]s, were synthesized with varying length of the alkenyl group; their ferroelectric properties are described. The smectic mesophases, including a switchable chiral smectic C (SmC*) phase, were characterized by differential scanning calorimetry, polarizing optical microscopy and the triangular wave method. The presence of vinyl groups at the ends of the linear side-wings in the banana-shaped achiral molecules, containing a Schiff's base mesogen, induced a decrease in melting temperature and formation of the switchable SmC* phase in the melt. The compound having the octenyloxy group exhibited a spontaneous polarization of 120 nC cm?2 on reversal of an applied electric field.  相似文献   
95.
An investigation of etching behaviors for Mo and Al2O3 thin films in O2/Cl2/Ar inductively coupled plasmas at constant gas pressure (6 mTorr), input power (700 W) and bias power (200 W) was carried out. It was found that an increase in Ar mixing ratio for Cl2/Ar plasma results in non-monotonic etching rates with the maximums of 160 nm/min at 60 % Ar for Mo and 27 nm/min at 20 % Ar for Al2O3. The addition of O2 in the Cl2/Ar plasma causes the non-monotonic Mo etching rate (max. 320 nm/min at 40–45 % O2) while the Al2O3 etching rate decreases monotonically. The model-based analysis of etching kinetics allows one to relate the non-monotonic etching rates in Cl2/Ar plasma to the change in the etching regime from the ion-flux-limited mode (at low Ar mixing ratios) to the neutral-flux-limited mode (for high Ar mixing ratios). In the Cl2/O2/Ar plasma, the non-monotonic Mo etching rate is probably due to the change in reaction probability.  相似文献   
96.
We describe herein the synthesis of novel donor–acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3‐benzothiadiazole as the electron acceptor for high‐performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto‐electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field‐effect transistor analyses, we found that the thiophene‐containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge‐carrier mobility up to 0.55 cm2 V?1 s?1. The outstanding charge‐transport characteristics of this polymer allowed the realization of high‐performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space‐charge‐limited current model.  相似文献   
97.
Lower respiratory tract infection is one of the most common infectious diseases. However, conventional methods for detecting infectious pathogens are time‐consuming, and generally have a limited impact on early therapeutic decisions. We previously reported a rapid and sensitive method for detecting such pathogens using stuffer‐free multiplex ligation‐dependent probe amplification coupled with high‐resolution CE‐SSCP. In this study, we report an application of this method to the detection of respiratory pathogens. As originally configured, this method was capable of simultaneously detecting seven bacterial species responsible for lower respiratory tract infections, but its detection limit and assay time were insufficient to provide useful information for early therapeutic decisions. To improve sensitivity and shorten assay time, we added a target‐specific preamplification step, improving the detection limit from 50 pg of genomic DNA to 500 fg. We further decreased time requirements by optimizing the hybridization step, enabling the entire assay to be completed within 7 h while maintaining the same detection limit. Taken together, these improvements enable the rapid detection of infectious doses of pathogens (i.e. a few dozen cells), establishing the strong potential of the refined method, particularly for aiding early treatment decisions.  相似文献   
98.
Polymer‐based crosslinked networks with intrinsic self‐repairing ability have emerged due to their built‐in ability to repair physical damages. Here, novel dual sulfide–disulfide crosslinked networks (s‐ssPxNs) are reported exhibiting rapid and room temperature self‐healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self‐healable networks utilizes a combination of well‐known crosslinking chemistry: photoinduced thiol‐ene click‐type radical addition, generating lightly sulfide‐crosslinked polysulfide‐based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s‐ssPxNs. The resulting s‐ssPxN networks show rapid self‐healing within 30 s to 30 min at room temperature, as well as self‐healing elasticity with reversible viscoelastic properties. These results, combined with tunable self‐healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials.

  相似文献   

99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号